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Abstract
Landscape chamcteristics such as small patch size and land-
cover heterogeneity have been hypothesized to increase the
likelihood of mis-classifying pixels during thematic image
classification. However. there has been a lack of empirical
evidence to support these hypotheses. This study utilizes data
gathered as part of the accumcy assessment of the 1992 National
Land Cover Data (NLCD) set to identify and quantify the impacts
of land-covcr hctcrDgcncity and patch size on classification
accumcy; Logistic regression is employed to assess the impacts
of these variables. as well as the impact of land-cover class
information. The results reveal that accumcy decreases as land-
cover heterogeneity increases and as patch size decreases. These
landscape variables remain significant factors in explaining
classification accumcyeven when adjusted for their con-
founding association with land-cover class information.

Introduction
Remotely sensed images are being used more extensively than
ever to identify land-cover over large regions and to analyze its
impacts on environmental conditions (Dobson et al., 1995; Scott
and Jennings, 1998). To accurately employ such data, compre-
hensive knowledge of the causes, location, and extent of classifi-
cation errors in land-cover data sets is of critical importance
(Congalton and Green, 1993; Congalton and Green, 1999; Yang et
al., 2000; Shao et al., 2001). Assessing the accuracy of thematic
image classification has traditionally been conducted by com-
paring the map class to the true or reference class at a randomly
selected sample of locations. Comparison of the two is con-
ducted by constructing a contingency table, also known as a
confusion or error matrix, that reveals discrepancies between the
two data sets (Congalton et al., 1983; Story and Congalton,
1986). From this table, a number of measures may be derived to
assess the overall accuracy of the classification, including errors
of omission and commission, producer's and user's accuracies,
and the Kappa coefficient (Congalton and Green,1999).

Classification error is caused by the interaction ofnumer-
ousfactors, including landscape characteristics, sensor resolu-
tion, spectral overlap, preprocessing algorithms, and classifica-
tion procedures (Campbell, 1983). Landscape characteristics
that have been hypothesized to contribute to pixel mis-classifi-~

cation include high land-cover heterogeneity, small patch size.
and convoluted shapes. all of which result in pixels being
harder to classify and in slight registration differences intro-
ducing perceived classification errors. In addition. errors along
land-cover boundaries may be compounded because a sub-
stantial proportion of the signal. apparently coming from a land
area represented by a specific pixel. actually comes from that
pixel's neighbors (Townshend etal., 2000). This results in a ten-
dency for mis-classified pixels to form chains along the bound-
aries of homogeneous patches (Campbell. 1987). Congalton
(1988) reported just such a pattern. while analyzing a forest.
non-forest classified image. The pattern of a decrease in classi-
fication accuracy along patch edges has been assumed in stud-
ies of the impact of classification error on landscape metrics
(Wickham et al.. 1997) and the efficiency of various! spatial
sampling strategies (Moisen et al.. 1994).

Even though the qualitative impacts of contextual land-
scape characteristics have thus been acknowledged. there is a
general lack of precise quantitative information derived from
empirical analysis. The purpose of this study is to identify and
quantify the impacts of landscape characteristics on whether a
pixel is correctly classified and to assess whether these effects
are maintained when land-cover information is included in the
statistical model. Relationships between classification error
and the explanatory variables will be analyzed through the con-
struction of a number of models that allow for individual im-
pacts to be estimated.

Methods
This study utilized data gathered for the accuracy assessment
of the National Land Cover Data (NLCD) set, that was initiated
by the Multi-Resolution Land Characterization (MRLC) consor-
tium (Loveland and Shaw. 1996). The consortium was created
to produce comprehensive, consistently classified land-cover
data sets for the United States. one of which is the NLCD. This
data set was derived from Landsat Thematic Mapper (TM)
images of the contiguous United States (Vogelmann et al..
1998; Vogelmann etal.. 2001). Accuracy assessments of the
data are being undertaken by federal region, with this study
utilizing data gathered for the assessment of Regions 1 through
4, generally the eastern United States (Figure 1). Methodology
employed in the assessments has been described in Stehman et
al. (2000). Yang et al. (2000). and Zhu et al. (1999; 2000), with
the results summarized in Yang et al. (2001).
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Rgure 1. Area under study

In each of the four regions. accuracy assessments were con-
ducted by a different team of photo interpreters using hardcopy
National Aerial Photography Program (NAPP) photographs as
the reference data set. To minimize the effects of regional dif-
ferences in photointerpreter knowledge and experience. data
from the four regions were analyzed separately. Table 1 lists the
number of samples employed for each class.

Landscape Variable Derivatio:ns
Spatial analyses were performed using ARCiINFO, with the four
land-cover data sets, one for each region, in the form of ARC!
INFO grids. The original NLCD pixel size of 30 meters was
retained throughout the study, thus limiting the variables ana-
lyzed to the scale of the TM imagery. Four regional sample-point
coverages were also utilized, with each point being the
centroid of a randomly selected pixel. In order to limit the size
of the derived land-cover data sets, buffers with a radius of
3000 meters were created around the sample points. These
buffers were then overlayed upon the land-cover grids in order
to isolate land-covers in close proximity to the sample points.
This resulted in circular zones of land-cover 200 pixels across,
centered on all of the sample points. Buffers which exceeded
the boundaries of the land-cover grids had their sample points
excluded from further analysis. The number of samples re-
maining for analysis varied from 1009 in Region 3 to 1378 in
Region 1 (Table 1).

Once the buffer land-cover grids were created, the patch
size and land-cover heterogeneity variables were derived.
Patch size was defined as the number of contiguous pixels of

the same land-cover class, within which the sample point was
located. Contiguity was identified as occurring when any of the
eight surrounding pixels were the same class as the center pixel.
The other landscape variable, land-cover heterogeneity. was
defined as the number of land-cover classes occurring in a
three- by three-pixel window centered on the sample pixel. A
heterogeneity value greater than one wouldmdicate that the
sample was located 30 meters from a patch edge. Theoretically,
the maximum heterogeneity value would be nine, a different
class in every pixel; however, values in this study varied from
one (a homogeneous 3 by 3 block) to seven. Once these vari-
abies were identified. an arc macro language (AML) program
was employed that identified the NLCD land-cover. patch size,
and pixel heterogeneity at the sample points for all four regions.
This program extracted the x and y coordinate values from the
point coverages and then applied them to identify the grid attri-
butes at those locations.

Statistical Analyses
After the spatial queries were completed. the variables were
prepared for use in the statistical analyses. Preliminary analy-
ses indicated that transforming patch size to a logarithmic (base
10) scale would improve the linearity of the logistic regression
model. All modeling was conducted with the transformed
patch size variable, and any subsequent reference to patch size
in these analyses should be understood as pertaining to the log-
arithm of patch size. Patch size was denoted as explanatoryvari-
able XI. with the other landscape variable. heterogeneity
denoted as X2' In addition. another variable representing the
product of heterogeneity and patch size. XIX2. was created for
use in assessing the importance of their interaction in the logis-
tic regression models. Several of the models also included land-
cover class in the set of incorporated explanatory variables. In
order to accomplish their inclusion, binary (i.e., dummy) vari-
ables were created for each land-cover class. with the variable
defined as 1 if the sample pixel belonged to that class and 0 if it
did not. Fourteen land-cover classes were incorporated (see
Table 1) into the analyses. represented by 13 dummy variables
(denoted X3 through XIS)'

The final variable created was the binary response vari-
able, representing whether the sample pixel was correctly clas-
sified (coded as 1). or not (coded as 0). A correct classification
occurred when the photointerpreted class matched the class of
the NLCD sample pixel. This definition of agreement applied to
the data analyzed represents the strictest definition employed
among the various definitions considered for the NLCD accuracy
assessment (Yang et al.. 2000; Yang et al., 2001).

Logistic regression analysis models the relationship
between a binary response variable and one or more explana-
tory variables (Hosmer and Lemeshow, 1989; Agresti, 1996).

TABLE 1. NUMBER OF SAMPLES BY CLASS PER REGION

Low density residential
High density residential
Comm erc i aI/Industrial/Trans porta ti on
Bare rock/sand
Quarries/mines
Transitional
Deciduous forest
Evergreen forest
Mixed forest
Pasture/hay
Row crops
Urban/recreational grasses
Woody wetlands
Emergent herbaceous wetlands
Total Samples
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Results from the regression include the probability of each
sample being correctly classified and a number of diagnostic
measures to assess the fit of the model and the impact of indi-
vidual variables. Recent examples of logistic regression appli-
cations to remote sensing problems include studies of forest
fire ignition (Koutsias and Karteris, 1998; Perestrello de Vas-
concelos et al., 2001), deforestation (Ludeke et al., 1990;
Chomitz and Gray, 1996; Mertens and Lambin, 2000), and
urbanization (Gunter et al., 2000). The logistic regression
model is

will be classified correctly, a sample of pixels independent of
those used to fit the model should be assessed.

To identify the individual impacts of the landscape vari-
ables (see Models la and Ib, Table 2) on classification accu-
racy, two additional statistics were computed. The odds ratio,
p/(l -p), quantifies the change in the odds ofa correct classifi-
cation, given a one unit change in the explanatory variable.
Also computed was the "median effective level." which is the
value of the explanatory variable at which each outcome (cor-
rect and incorrect classification) has a 50 percent chance of
occurring (Agresti, 1996, pp. 104-105). For example, the
median effective level for heterogeneity would be its value at
which the probability of a correct classification is 0.5. Median
effective level is computed asx = -a/ /3, where a and /3 are the
parameter estimates from the single variable logistic regression
models (Models la and Ib).

log (p/(l -p» = a + PIX.} + P2X2 + + f3kXk

where p is the probability of a correct classification, a is the
intercept, Xl through Xk are explanatory variables, and /31
through /3kthe parameters.

Assessment of the effects of the different explanatory vari-
ables on accuracy is predicated on the analysis of several logistic
regression models (Table 2). Relevant statistics derived from the
analyses include the estimates of the /3 parameters for each
model, -2 log likelihood (-2LL), Akaike Information Criterion
(AIC), and concordance values. The -2LL statistics are used to
test whether all regression coefficients in a model are simultane-
ously zero, with a significant p-value «0.05), providing evi-
dence that at least one of the regression coefficients among the
explanatory variables in the model is non-zero. Based on the
-2LL, the AIC modifies its values by penalizing the model for
incorporating marginal, or insignificant, explanatory variables
and is a useful measure for comparing different models. For both
measures, the lower the value, the better the model. Another
advantage of the -2LL statistic is that it can be used to formally
test if incorporating additional independent variables results in
a statistically significant improvement in model accuracy.
Assessment of the additional variables is conducted by calculat-
ing the difference between the -2LL values of the two models.
This difference follows a chi-square distribution with degrees of
freedom equal to the difference in the number of explanatory
variables used in the larger model, as compared to the reduced
model (Hosmer and Lemeshow 1989, Section 2.4).

Effectiveness of different models can also be analyzed by
comparing their concordance values. Concordance is calcu-
lated by comparing the probabilities of all of the correctly clas-
sified pixels with the probabilities of all of the incorrectly
classified pixels (Hosmer and Lemeshow, 1989). If the correctly
classified pixel of the pair has the higher probability of being
correct, then that pair is said to be concordant; conversely, if the
incorrectly classified pixel has the higher probability, then the
pair is said to be discordant. Finally, if the probabilities are
equal, the pair is said to be tied. Thus, the higher the concor-
dance, the better the model. It should be noted thatconcor-
dance is used here to compare the models, not to establish the
predictive performance of specific models. To quantify a mod-
el's ability to predict (in a future sense) whether a given pixel

TABLE 2. DESCRIPTION OF MOOELS EVALUATED

Results and Discussion
The goal of the study was to assess the impact of landscape
characteristics on thematic image classification accuracy.
Models la and lb were developed to assess the individual
impacts orland-cover heterogeneity and patch size on classifi-
cation accuracy. Parameter estimates, odds ratios, and median
effective leyels from these two models are presented, by region,
in Table 3. Both variables were consistently statistically signifi-
cant (p < 0.0001) across all four regions, with the values hav-
ing opposite effects on classification ac;:curacy. Land-cover
heterogeneity had negative slope estimates and odds ratios less
than 1, indicating a relationship in which accuracy decreases
as heterogeneity increases. Analysis of both the slope esti-
mates and the odds ratios shows remarkable similarity among
the four regions for the heterogeneity only model (Modellb).
Median effective levels ranged from a low of 1 (a thematically
homogeneous 3 by 3 window) in Region 1 to a high of 1.57 in
Region 2. Consequently, when heterogeneity is greater than 1,
the probability of a correct classification falls below 0.5. Figure
2 displays the correct classification rate at various heterogene-
ity values and reflects the almost continuous decrease in accu-
racy as heterogeneity increases.

In contrast to the heterogeneity model, patch size had posi-
tive slope estimates and odds ratios greater than 1, indicating a
relationship in which classification accuracy increases as
patch size increases. The patch size models displayed slightly
greater regional variability than did the heterogeneity relation-
ship, mainly due to the Region 2 estimates. Median effective
levels for patch size ranged from 3.36 in Region 4 to 3.80 in
Region 3. Ifwe specify 3.5 (equivalent to 3162 pixels, or approxi-
mately 284.6 hectares) as a typical median effective level, we
have a 50-50 chance of classifying a pixel correctly if the sam-
ple pixel is contained in a patch of that size. Samples in patches
smaller than this amount have less than a 50 percent chance of
being correctly classified, while larger patches have a greater
chance. Regional classification accuracies range from 15 to 25
percent for patches less than ten pixels, to 52 to 62 percent for
patches greater than 10,000 pixels (Figure 3). Though there is
an increasing trend for all of the regions, the magnitude of the
impact varies among the regions at specific variable values.
Region 2 experiences large increases in accuracy at relatively
small sizes, while Region 3 experiences large increases at
larger sizes.

Analysis of the AIC values and concordance statistics
(Table 4) for the two variables reveals that patch size provides
a better single variable model than does heterogeneity (AIC was
lower and concordance higher for Modella as compared to
Modellb). The exception was Region 2, which had a lower AIC
value for heterogeneity than for patch size. Overall, these find.
ings suggest that patch size was a slightly more important deter-
minate of classification accuracy than was heterogeneity.

3

4
5

Po Intercept only
Po + P1X1 Patch size
Po + P2X2 Heterogeneity
Po + PIX1 + P2X2 Patch size and

heterogeneity
Po + PIX1 + f32X2 + PI.2XIX2 Patch size, hetero-

geneity and
interaction

fJn + P'J1C3 + P.X. + ...+ P15X15 Land cover
fJo + PIXI + f32X2 + f33X3 + P.X. + Landscape and land

...+ Pl5Xl5 cover
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TABLE 3. EVALUATION OF ORIGINAL LANDSCAPE VARIABLES

1.00
3.55
1.57
3.66
1.05
3.80
1.40
3.36

Heterogeneity
Patch Size
Heterogeneity
Patch Size
Heterogeneity
Patch Size
Heterogeneity
Patch Size
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Figure 3. Impact of patch size on classification accuracy.

Now that the impacts of the individual landscape variables
have been identified and found to be significant determinates
of classification accuracy. the next part of the study assesses
whether their significance is maintained when otherexplana-
tory variables are added. Six hypothesis tests were developed

to examine differences in -2LL values (Table 5). Results from
the first hypothesis, HoI' indicate that a model incorporating
both landscape variables is a significant predictor of accuracy.
Because patch size and heterogeneity were correlated (correla-
tions range from -0.51 to -0.59 in the four regions), it is possi-
ble that the two landscape variables contribute overlapping
information to classification accuracy. To evaluate this possi-
bility, hypotheses Ho2 and HO3 were developed to test whether
patch size provided significant information on classification
accuracy in the presence of heterogeneity and vice versa. In all
four regions, the individual landscape variables remained sta-
tistically significant for Model 2. Consequently, we can state
that each landscape variable individually contributed useful
information, even when it was adjusted for that portion of
explanatory ability it shared with the other landscape variable.
Analysis of the -2LL, Arc, and concordance values (see Table 4)
also indicated that the combination of the two landscape vari-
ables provides a statistical improvement over either of the sin-
gle variable models.

Addition of the interaction term however, was not found to
be statistically significant, except in Region 3 (see Table 5, HQ4)'
The significant interaction in Region 3 was accompanied by
only a small change in Arc values between Models 2 and 3 (see
Table 4), which suggests that its contribution to explaining clas-
sification accuracy was relatively weak.

The last two models, Model 4 and Model 5, were devel-
oped to evaluate the impact of land-cover and landscape infor-
mation on classification accuracy. These models assess
whether the observed significant relationship between the
landscape variables and accuracy was maintained in the pres-
ence of land-cover class information (i.e., were the landscape
variables simply acting as surrogates for the true determinate of
accuracy, land-cover class). Hypothesis Hos (see Table 5)evalu-
ated whether the landscape variables contributed significant
explanatory value beyond that provided by land-cover class, as
captured by dummy variables X3' ..., XIS' The highly significant
test results for Hos in all four regions provide strong evidence
that the landscape variables were important determinates of
accuracy, even adjusted for their shared contribution with
land-cover class. In other words, the importance of the land-
scape variables is not solely attributable to an association be-
tween landscape properties and land-cover class. Additionally,
the question was reversed in order to analyze whether land-
cover class remained an important factor in accuracy assess-
ments when it was adjusted for its association with the land-
scape variables. The statistically significant results in all four
regions for hypothesis H06 (see Table 5) demonstrated that
land-cover class was still an important determinate of accuracy
in a model that already contained the landscape variables.

Combining the outcomes of tests Hos and HO6' we can state
that both land-cover class and landscape characteristics con-
tribute important explanatory information to the logistic
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LOGISTIC REGRESSION MODEL FIT STATISTICSTABLE 4.

1645.35
1649.35

67.4
1702.06
1706.06

58.2
1288.40
1292.40

63.8
1716.87
1720.87

67.4

1505.83
1537.83

74.9
1496.05
1528.05

74.7
1203.10
1235.10

70.4
1595.32
1627.32

73.9

Region 1 1767.33
1769.33

N/A
1737.98
1739.98

N/A
1346.34
1348.34

N/A
1850.10
1852.10

N/A

1630.73
1638.73

68.4
1677.38
1685.38

62.2
1270.58
1278.58

65.3
1704.02
1712.02

68.5

1645.18
1673.18

61.9
1569.16
1597.16

63.2
1273.78
1301.78

59.5
1735.84
1763.84

62.6

Region 2

Region 3

Region 4

-2LL
AIC
Concordance
-2LL
AIC
Concordance
-2LL
AIC
Concordance
-2LL
AIC
C.oncordance

All models produced p-values < 0.0001 for the test of the null hypothesis that all parameters (fJs) in the model are simultaneously zero.

regression model of classification accuracy. Based on AIC val-
ues and concordance statistics (see Table 4). in three of the
regions, the landscape variables (Model 2) provided a slightly
better model than did the land-cover class variables (Model
4). The lone exception was Region 2, which had the land-cover
class variables providing the better model. Overall, these
comparisons suggest that the landscape variables possessed a
slightly stronger relationship with classification accuracy
than that provided by the land-cover class variables alone.

the variables representing land-cover class information. In all
four regional data sets analyzed. the best results were pro-
duced by a model that combines both landscape and land-
cover variables.

The results of this study provide support for the belief that
examining pixels in the context of the landscape provides
accuracy information beyond that readily apparent by exam-
ining an error matrix alone. Landscape characteristics should
be awarded the same concern and consideration in accuracy
assessments as land-cover class. Additionally, logistic regres-
sion has been shown to be a useful tool in allowing for vari-
ables beyond land-cover class to be evaluated in terms of their
effects on classification accuracy. Future research will focus
on how the impacts of landscape variables may vary among
land-cover class. photo interpreter characteristics, and the
scale at which the variables are derived.

The gonl of this study was to quantify the effects of two land-
scape variables-land-cover heterogeneity and patch size-on
thematic image classification accuracy, and to assess their rel-
ative contributions to accuracy in the presence of land-cover
information. A total of 5,020 photo interpreted assessment
points, distributed across the eastern United States, were ana-
lyzed. Results indicate that, at the spatial resolution of the
imagery employed, both landscape variables play an impor-
tant role in determining whether sample pixels were accu-
rately classified. As heterogeneity increases, the probability
of misclassifying pixels also increases while, as patch size
increases, this probability decreases. The important contribu-
tion of the landscape variables in explaining classification
error is maintained even when land-cover information is
included in the logistic regression model. That is, the two
landscape variables remain important explanatory variables
even when adjusted for their confounding effects shared with

The U.S. EO:vironmental Protection Agency funded and con-
ducted the research described in this paper. It has been sub-
ject to the Agency's programmatic review and has been
approved for publication. Mention of any trade names or
commercial products does not constitute endorsement or rec-
ommendation for use. The author's would like to thank three
anonymous reviewers for their helpful comments. In addition
we would like to thank the photographic interpreters who
aided in the land-cover classification accuracy assessment.

TABLE 5. CHI-SQUARE TEST STATISTICS FOR MOOEL COMPARISONS

Hot

HO2
HO3

HQ4
HO5
Hoo

2
1

1
2

13

*-statistically significant at the .05 level
Explanation of hypothesis tests:
HO1:Pl = Pz = 0 in Model 2. Is the joint contribution of patch size and heterogeneity significant?
HO2:Pl = 0 in Model 2. Is the additional explanatory contribution of patch size to a model already containing heterogeneity significant?
Ho3:P2 = 0 in Model 2. Is the additional explanatory contribution of heterogeneity to a model already containing patch size significant?
HO4:P12 = 0 in Model 3. Does the interaction between patch size and heterogeneity contribute significant explanatory value?
Hos:J3t = Pz = 0 in Model 5. Is the additional explanatory contribution of the landscape variables to a model already containing the land-cover

dummy variables statistically significant?
H()6:fJ3 = P4 = ...= PIS = 0 in Model 5. Is the additional explanatory contribution of the land-cover variables to a model already containing

the landscape variables statistically significant?

onuory 2002 69
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



References
Agresti, A., 1996. An Introduction to Categorical Data Analysis. John

Wiley and Sons. New York, N.Y., 290 p.
Campbell. J.B., 1983. Mapping the Land: Aerial Imagery for Land Use

Information, Association of American Geographers. Washington,
D.C., 97 p.

-, 1987. Introduction to Remote Sensing, Guilford Press, New
York, N.Y.. 622 p.

Chomitz, K.M., and D.A. Gray, 1996. Roads, land use, and deforestation:
A spatial model approach to Belize, World Bank Economic
Review, 10:487-512.

Congalton, R.G., 1988. Using spatial autocorrelation analysis to explore
the errors in maps generated from remotely sensed data, Photo-
grammetric Engineering 8- Remote Sensing, 54(5):587-592.

Congalton, R.G., and K. breen, 1993. A practical look at the sources
of confusion in error matrix generation, Photogrammetric Engi-
neering 8- Remote Sensing, 59(5):641-644.

-, 1999. Assessing the Accuracy of Remotely Sensed Data: Princi-
ples and Practices, Lewis Publishers, Boca Raton, Florida, 137 p.

Congalton, R.G., R.G. Oderwald. and R.A. Mead, 1983. Assessing Land-
sat classification accuracy using discrete multivariate statistical
techniques, Photogrammetric Engineering 8- Remote Sensing,
49(12): 1671-1678.

Dobson, J.E., E.A. Bright, R.L. Ferguson, D.W. Field, L.L. Wood, K.D.
Haddad, H. Iredale III, J.R. Jensen, V.V. Klemas, R.J. Orth, and J.P.
Thomas, 1995. NOAA Coastal Change Analysis Program (C-CAP):
Guidance for Regional Implementation, NOAA Technical Report,
Department of Commerce, Washington. D.C., NMFS 123, Seattle,
Washington, 92 p.

Gunter, J.T., D.G. Hodges. C.M. Swaim. and J.L. Regens. 2000. Pre-
dicting the urbanization of pine and mixed forests in Saint Tam-
many parish, Louisiana, Photogrammetric Engineering 8- Remote
Sensing, 66(12):1469-1476.

Hosmer, D.W., and S. Lemeshow. 1989. Applied Lagistic Regression.
John Wiley and Sons, New York. N.Y.. 307 p.

Koutsias, N., and M. Karteris. 1998. Logistic regression modeling of
multitemporal Thematic Mapper data for burned area mapping,
International Journal of Remote Sensing. 19(18):3499-3514.

Loveland. T.R., and D.M. Shaw, 1996. Multiresolution land character-
ization: building collaborative partnerships, Gap Analysis: A
Landscape Approach to Biodiversity Planning Praceedings of the
ASPRSIGAP Symposium, (J.M. Scott, T. Tear, and F. Davis, edi-
tors). 15-19 July. Charlotte, North Carolina, National Biological
Service, Moscow, Idaho, pp. 83-89.

Ludeke, A.K.. R.C. Maggio, and L.M. Reid, 1990. An analysis ofanthro-
pogenic deforestation using logistic regression and GIS, Journal
of Environmental Management, 31:247-259.

Mertens, B.. and E.F. Lambin, 2000. Land-cover-change trajectories in
southern Cameroon, Annals of the Association of American Geog-
raphers. 90(3):467-494.

Moisen, G.G., T.G. Edwards, Jr.. and D.R. Cutler, 1994. Spatial sampling
to assess classification accuracy of remotely sensed data. Environ-
mental Information Management and Analysis: Ecosystem to
Global Scales (W.K. Michener, J.W. Brunt, and S.G. Stafford, edi-
tors), Taylor and Francis, London, England, pp. 159-176.

Perestrello de Vasconcelos, M.]., S. Silva, M. Tome, M. Alvim, and
].M.C. Pereira, 2001. Spatial prediction of fire ignition probabili-
ties: Comparing logistic regression and neural networks, Photo-
grammetric Engineering 8' Remote Sensing, 67(1):73-81.

Scott, ].M., and M.D. Jennings, 1998. Large-area mapping of biodiver-
sity, Annals of the Missouri Botanical Garden, 85:34-47.

Shao, G., D. Liu, and G. Zhao, 2001. Relationships of image classifica-
tion accuracy and variation of landscape statistics, Canadian Jour-
nal of Remote Sensing, 27(1):33-43.

Stehman, S. V.,].D. Wickham, L. Yang, and ].H. Smith, 2000. Assessing
the accuracy of large-area land cover maps: Experiences from the
Multi-Resolution Land-Cover Characteristics (MRLC) project, Pro-
ceedings of the Fourth International Symposium on Spatial Accu-
racy Assessment in Natural Resources and Environmental
Sciences (G.B.M. Heuvelink and M.].P.M. Lemmens, editors), 12-
14 July, Amsterdam, The Netherlands, pp. G01-G08.

Story, M., and R.G. Congalton, 1986. Accuracy assessment: A user's
perspective, Photogrammetric Engineering 8' Remote Sensing,
52(3):397-399.

Townshend, ].R.G., C. Huang, S.N. V. Kalluri, R.S. DeFries, and S. Liang,
2000. Beware of per-pixel characterization of land cover, Interna-
tional Journal of Remote Sensing, 21(4):839-843.

Vogelmann, J.E., S.M. Howard, L. Yang, C.R. Larson, B.K. Wylie, and
N. Van Oriel, 2001. Completion of the 1990s National Land Cover
Data Set for the conterminous United States from Landsat The-
matic Mapper data and ancillary data sources, Photogrammetric
Engineering 8' Remote Sensing, 67(6):650-662.

Vogelmann, J.E., T. Sohl, and S.M. Howard, 1998. Regional character-
ization of land cover using multiple sources of data, Photogram-
metric Engineering 8' Remote Sensing, 64(1):45-57.

Wickham, J.D., R. V. O'Neill, K.H. Riitters, T.G. Wade, and K.B. Jones,
1997. Sensitivity of selected landscape pattern metrics to land-
cover misclassification and differences in land-cover composition,
Photogrammetric Engineering 8' Remote Sensing, 63(4):397-402.

Yang, L., S.V. Stehman, J.H. Smith, and J.D. Wickham, 2001. Thematic
accuracy of MRLC land cover for the eastern United States,
Remote Sensing of Environment, 76:418-422.

Yang, L., S.V. Stehman, J.D. Wickham, J.H. Smith, and N.J. Van Oriel,
2000. Thematic validation of land cover data of the eastern United
States using aerial photography: feasibility and challenges, Pro-
ceedings of the Fourth International Symposium on Spatial Accu-
racy Assessment in Natural Resources and Environmental
Sciences (G.B.M. Heuvelink and M.J.P.M. Lemmens, editors), 12-
14 July, Amsterdam, The Netherlands, pp. 747-754.

Zhu, Z., L. Yang, S.V. Stehman, and R.L. Czaplewski, 1999. Designing
an accuracy assessment for a USGS regional land cover mapping
program, Spatial Accuracy Assessment-Land Information
Uncertainty in Natural Resources (K. Lowell and A. Jaton, edi-
tors), Sleeping Bear Press/Ann Arbor Press, Chelsea, Michigan,
pp. 393-398.

-, 2000. Accuracy assessment for the U.S. Geological Survey
regional land cover mapping program: New York and New Jersey
region, Photogrammetric Engineering 8' Remote Sensing,
66(12):1425-1435.

(Received 23 May 2001; accepted 20 August 2001; revised 14 Septem-
ber 2001)

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
lonuory 2002


